首页> 外文OA文献 >Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance
【2h】

Goal-based trajectory analysis for unusual behaviour detection in intelligent surveillance

机译:基于目标的轨迹分析,用于智能监控中的异常行为检测

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Video surveillance systems are playing an increasing role in preventing and investigating crime, protecting public safety, and safeguarding national security. In a typical surveillance installation, a human operator has to constantly monitor a large array of video feeds for suspicious behaviour. As the number of cameras increases, information overload makes manual surveillance increasingly difficult, adding to other confounding factors like human fatigue and boredom.The objective of an intelligent vision-based surveillance system is to automate the monitoring and event detection components of surveillance, alerting the operator only when unusual behaviour or other events of interest are detected. While most traditional methods for trajectory-based unusual behaviour detection rely on low-level trajectory features, this thesis improves a recently introduced approach that makes use of higher-level features of intentionality. Individuals in a scene are modelled as intentional agents instead of simply objects. Unusual behaviour detection then becomes a task of determining whether an agent's trajectory is explicable in terms of learned spatial goals. The proposed method extends the original goal-based approach in three ways: first, the spatial scene structure is learned in a training phase; second, a region transition model is learned to describe normal movement patterns between spatial regions; and third, classification of trajectories in progress is performed in a probabilistic framework using particle filtering. Experimental validation on three published third-party datasets demonstrates the validity of the proposed approach.
机译:视频监视系统在预防和调查犯罪,保护公共安全以及维护国家安全方面发挥着越来越重要的作用。在典型的监视安装中,操作员必须不断监视大量视频源中的可疑行为。随着摄像机数量的增加,信息过载使手动监控变得越来越困难,从而增加了其他混淆因素,例如人的疲劳和无聊。基于视觉的智能监控系统的目标是使监控的监视和事件检测组件自动化,从而向仅当检测到异常行为或其他感兴趣的事件时,才可操作操作员。虽然大多数基于轨迹的异常行为检测的传统方法都依赖于低级轨迹特征,但本文还是对最近引入的利用意向性高级特征的方法进行了改进。场景中的个体被建模为故意代理,而不仅仅是对象。然后,异常行为检测就变成了确定任务者的轨迹在学习的空间目标方面是否可解释的任务。所提出的方法通过三种方式扩展了原始的基于目标的方法:首先,在训练阶段学习空间场景结构;第二,学习区域转换模型来描述空间区域之间的正常运动模式。第三,使用粒子滤波在概率框架中对进行中的轨迹进行分类。对三个已发布的第三方数据集的实验验证证明了该方法的有效性。

著录项

  • 作者

    Tung, Frederick;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 en
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号